Perturbation propagation in random and evolved Boolean networks
نویسندگان
چکیده
In this paper, we investigate the propagation of perturbations in Boolean networks by evaluating the Derrida plot and its modifications. We show that even small random Boolean networks agree well with the predictions of the annealed approximation, but nonrandom networks show a very different behaviour. We focus on networks that were evolved for high dynamical robustness. The most important conclusion is that the simple distinction between frozen, critical and chaotic networks is no longer useful, since such evolved networks can display the properties of all three types of networks. Furthermore, we evaluate a simplified empirical network and show how its specific state space properties are reflected in the modified Derrida plots. 3 Author to whom any correspondence should be addressed. New Journal of Physics 11 (2009) 033005 1367-2630/09/033005+13$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
منابع مشابه
Propagation Models and Fitting Them for the Boolean Random Sets
In order to study the relationship between random Boolean sets and some explanatory variables, this paper introduces a Propagation model. This model can be applied when corresponding Poisson process of the Boolean model is related to explanatory variables and the random grains are not affected by these variables. An approximation for the likelihood is used to find pseudo-maximum likelihood esti...
متن کاملEvolution of a population of random Boolean networks
We investigate the evolution of populations of random Boolean networks under selection for robustness of the dynamics with respect to the perturbation of the state of a node. The fitness landscape contains a huge plateau of maximum fitness that spans the entire network space. When selection is so strong that it dominates over drift, the evolutionary process is accompanied by a slow increase in ...
متن کاملFitting Propagation Models with Random Grains, Method and Some Simulation Studies
In this paper the regression problem for random sets of the Boolean model type is developed, where the corresponding poisson process of the model is related to some explanatory variables and the random grains are not affected by these variables. A model we call propagation model, is presented and some methods for fitting this model are introduced. Propagation model is applied in a simulation st...
متن کاملEvolution of Canalizing Boolean Networks
Boolean networks with canalizing functions are used to model gene regulatory networks. In order to learn how such networks may behave under evolutionary forces, we simulate the evolution of a single Boolean network by means of an adaptive walk, which allows us to explore the fitness landscape. Mutations change the connections and the functions of the nodes. Our fitness criterion is the robustne...
متن کاملLyapunov Exponents in Random Boolean Networks
A new order parameter approximation to Random Boolean Networks (RBN) is introduced, based on the concept of Boolean derivative. A statistical argument involving an annealed approximation is used, allowing to measure the order parameter in terms of the statistical properties of a random matrix. Using the same formalism, a Lyapunov exponent is calculated, allowing to provide the onset of damage s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009